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Preface
that are conceptually the most difficult—to answer the 
questions how does it work and why does it matter to me. 
The “it” could be a cancer drug that inhibits an enzyme, 
an external stimulus that activates a signaling pathway and 
controls blood sugar, or a biochemical assay that measures 
gene expression levels. We told them that to answer the how 
it works part, they would have to explain the biochemical 
process in clear and concise language, while the why it 
matters part required them to make it relevant to their own 
life experience.

As we collected more and more of these “how and 
why” examples over the years, it became clear to us that 
our biochemistry textbook should focus on presenting 
core concepts in a relatable way centered around three 
themes: (1) the interdependence of energy conversion 
processes, (2) the role of signal transduction in metabolic 
regulation, and (3) biochemical processes affecting human 
health and disease. The pedagogical foundation for each 
of these themes is that molecular structure determines 
chemical function. In developing the outline for the book, 
we ignored the urge to write it like an automobile owner’s 
manual in which all of the parts are listed first (proteins, 
lipids, carbohydrates, nucleic acids), and then the function 
of the car (metabolic pathways) is described by assembling 
the parts in a systematic way (easy to memorize).

Instead, we chose to organize the book using five 
core blocks (collections of chapters, or parts) that consist 
of modules (individual chapters) made up of concept-
based submodules (numbered chapter sections) with 
limited, focused, unnumbered subsections. The five core 
blocks we chose are “Part 1: Principles of Biochemistry” 
(Chapters 1–3), “Part 2: Protein Biochemistry” (Chapters 
4–8), “Part 3: Energy Conversion Pathways” (Chapters 
9–12), “Part 4: Metabolic Regulation” (Chapters 13–19), 
and “Part 5: Genomic Regulation” (Chapters 20–23). This 
organization provides the student with an opportunity to 
work through related concepts before moving on to new 
ones. For example, what is needed to understand protein 
structure and function is presented in Part 2, including how 
proteins function as enzymes or as relay partners in a signal 
transduction pathway. In Part 4, carbohydrate structure 
and function (Chapter 13) and carbohydrate metabolism 
(Chapter 14) are paired together, as are lipid structure and 
function (Chapter 15) and lipid metabolism (Chapter 16), 

This book was conceived more than 15 years ago when 
W.  W.  Norton editor Jack Repcheck popped his head  
into Roger Miesfeld’s office one sunny afternoon 

in Tucson, Arizona. Jack had just seen Roger’s new text-
book on molecular genetics in the bookstore and had been 
impressed with the illustrations. He said, “Dr. Miesfeld, 
how would you like to author a full-color textbook that 
takes the same visual approach to biochemistry as you did 
for the topic of molecular genetics?” And with those fateful 
words began a conversation, and then the creation of a text-
book that focuses on how biochemistry relates to the world 
around us without relying on rote memorization of facts 
by students. In 2011, Roger’s colleague at the University of 
Arizona and next-door-office neighbor, Megan McEvoy, 
who is also an instructor of a large biochemistry service 
course, mentioned that she would be eager to work on a 
textbook that would improve pedagogy in the field. Thus, 
this project, which began years ago with a simple question, 
has resulted in the publication of the first truly new bio-
chemistry textbook in decades.

Meanwhile, we (Roger and Megan) have been teaching 
biochemistry to undergraduate, graduate, and medical 
school students for nearly 40 years combined and have loved 
every minute of it—seriously. During this time, we noticed 
that many biochemistry textbooks seemed to sidestep a 
very basic question in the minds of most students: “Why 
do I need to learn biochemistry?” To answer this question 
in the classroom, we developed a number of story lines that 
revolve around a simple premise: how it works and why it 
matters. We used the assigned textbook to fill in the details 
for our students but used the in-class lectures to provide 
the context the students needed to see the big picture. 
During this same time, the Internet became much more 
accessible so that it was almost trivial to find the name of 
an enzyme in a metabolic reaction or the equation required 
for calculating changes in free energy.

But despite the ease with which “info-bytes” could be 
obtained, and often simply memorized, what still required 
thought was integration of these pieces of information to 
fully understand concepts such as allosteric regulation of an 
enzyme, rates of metabolic flux, or the importance of weak 
noncovalent interactions in assembling gene transcription 
complexes. We challenged the students in our classes to 
approach each biochemical process—especially those 



can get through the more difficult concepts knowing there 
is a good reason to push ahead—it is likely to be relevant. 

Instructors may engage students more fully in the 
beauty of the world’s biological diversity using this book’s 
chemical framework, which frequently rises into the cellular 
level. One could follow our sequence through Parts 1–5 as 
we do in our classes or mix and match using a sequence 
that works best for the instructor. Students can likewise 
use our book as a biochemistry reference and read sections 
individually without having to read the book cover to cover. 
There are plenty of online materials and ancillary tools that 
have been developed for instructors and students, and we 
urge you to take full advantage of them.

Finally, we encourage you to look for new examples of 
everyday biochemistry and send the details to us so that we 
can add them to the collection for future editions.

Roger L. Miesfeld
Megan M. McEvoy

Authors’ Tour of the Book Features
The Only Textbook That Makes Visuals 
the Foundation of Every Chapter
Every figure in this textbook originated in our biochemistry 
lectures, and our preparation of each chapter involved cre-
ating the figures we wanted to include f irst and then writ-
ing the text of the chapter to fit those figures. The result is a 
book in which the figures and the text are inseparable from 
one another; they are one learning tool that strengthens 
students’ understanding of how biochemical processes and 
structures work. Specifically: 

●	 We’ve made sure that key chapter figures help students 
see how biochemistry functions in context. For example, 
Figure 9.3 in Chapter 9 provides a basic metabolic 
map that emphasizes the major biomolecules in cells 
and the interdependence of pathways. On the basis of 
this detailed figure, Figure 9.4 and similar figures in 
subsequent chapters of Parts 3 and 4 present simplified, 
iconic metabolic maps that clearly divide pathways into 
two discrete groups: those linked to energy conversion 
(red) and those linked to metabolite synthesis and 
degradation pathways (blue).
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while the structure of nitrogen-based biomolecules and 
their metabolism are presented together in Chapters 17 
(amino acids) and 18 (nucleotides). 

The figures in our book have been paramount since 
the very beginning; indeed, it was a commitment by 
W. W. Norton to a modern art program that hooked Roger 
in the first place. So we created each chapter starting with a 
collection of 30–40 hand-drawn illustrations or Web images 
that were complemented with molecular renderings based 
on Protein Data Bank (PDB) files and with photographs of 
people, places, or things. At the beginning of each chapter 
section, the topic is presented broadly, and then the reader 
is led into the themed concepts. With regularity, examples 
of everyday biochemistry are woven into the story line to 
provide an opportunity to step back for a moment and see 
the relevance of the topic to life around us. In our classes, 
we tell the students to use the everyday biochemistry 
examples as a way to make it personal, rather than as more 
info-bytes to memorize. The point of these examples is to 
generate excitement about biochemistry so that the student 
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●	 In the digital resources available to instructors, we are 
making available cutting-edge process animations—
many reflecting state-of-the-art 3D technology—that 
will strengthen students’ understanding of challenging 
biochemical processes.

●	 We’ve included hundreds of vibrant, precise, and 
information-rich molecular representations. These 
figures in the text are paired with state-of-the-art 3D 
interactive versions in the online homework.

Gγ subunit
Gα subunit

Gβ subunit

C-terminal
membrane

anchor

Plasma membrane

N-terminal
membrane
anchor

The 
complex 
formed 
between Gα 
and Gβγ 
prevents 
interactions 
with other 
proteins

GDP

●	 We’ve added abundant in-figure text boxes, numbered 
steps, and icons to help students navigate the most 
complex biochemical processes. Figure 7.35 provides 
a good example of our art 
program’s pedagogical value: 
It clearly illustrates a complex 
four-step reaction through 
numbered steps, descriptive 
captions, and a thorough 
complementary explanation 
in the text. 
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Unmatched Emphasis on Applications and 
Biomedical Examples Motivates Learning by 
Helping Students Connect the Material to both 
Their Majors and Their Everyday Experience
We know from our teaching that students can be equally 
engaged by biomedical examples and examples of biochem-
istry in the world around them. So throughout this book 
we’ve reinforced key biochemical concepts with applied 
examples that show why biochemistry matters.

●	 Each chapter-opening vignette provides an introduction 
to a biochemical application connected to the chapter’s 
central topic. Later, we ask students to reexamine the 
application in light of their newly acquired knowledge 
of the biochemistry behind it. For example, the opening 
vignette for Chapter 22 examines how an ingenious 
laboratory method enabled study of soil bacteria that 
were previously impossible to culture in the lab, which led 
to discovery of a new antibiotic. Another example is the 
opening vignette for Chapter 13, which visually presents 
the biochemistry behind the commercial product Beano.

Clear Explanations and a Distinctive 
Chapter Sequence Help Students Make 
Connections between Concepts
Our distinctive chapter sequence highlights connections 
between key biochemical processes, encouraging students 
to move beyond mere memorization to consider how 
biochemistry works. 

●	 In Part 1, we introduce essential, unifying concepts that 
are interwoven throughout the chapters that follow: 
hierarchical organization of biochemical complexity; 
energy conversion in biological systems; the chemical 
role of water in life processes; the function of cell 
membranes as hydrophobic barriers; and the central 
dogma of molecular biology from a biochemical 
perspective.

●	 As a capstone to the chapters on protein structure 
and function (Part 2), we present signal transduction 
(Chapter 8) as the prototypical example of how proteins 
work to mediate cellular processes.

●	 The topical sequence in Parts 3 and 4  
underscores the importance of energy 
conversion as the foundation for all 
other metabolic pathways, introducing 
enzyme regulation of metabolic flux as a 
central theme. In Part 3, we present the 
pathways involved in energy conversion 
processes before presenting degradative 
and biosynthetic pathways in Part 4. This 
helps students see complex processes and 
connections between concepts more clearly.

●	 We present the biomolecular structure and 
function of carbohydrates, lipids, amino 
acids, and nucleotides in Part 4 in the 
context of their metabolic pathways. This 
integrated approach encourages students to 
associate biochemical structure with cellular 
function in a way that promotes deeper 
understanding. 

●	 Rather than an encyclopedic list of 
individual reactions that can obscure 
students’ understanding of the important 
concepts, in Parts 3 and 4 we emphasize 
the regulation of 10 major (and broadly 
representative) metabolic pathways, with 
a special emphasis on the human diseases 
associated with these pathways.
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concept integration 14.3
Why does it make physiologic sense for muscle glycogen 
phosphorylase activity to be regulated by both metabolite allosteric 
control and hormone-dependent phosphorylation?

Muscle glycogen phosphorylase is allosterically activated by AMP, which signals low 
energy charge in the cell. High AMP levels also indicate a need for glycogen degrada-
tion and release of glucose substrate for ATP generation to support muscle contraction. 
Both ATP and glucose-6-P are allosteric inhibitors of muscle glycogen phosphorylase 
activity and signal a ready supply of chemical energy without the need for glycogen 
degradation. Both types of allosteric regulation occur rapidly on a timescale of seconds 
in response to sudden changes in AMP, ATP, and glucose-6-P levels. Allosteric control 
by metabolites provides a highly e�cient means to control rates of glycogen degrada-
tion in response to the immediate energy needs of muscle cells. In contrast, hormonal 
regulation of muscle glycogen phosphorylase activity by glucagon and epinephrine is 
a delayed response (occurring on a timescale of hours), resulting in phosphorylation 
and activation of the enzyme after neuronal and physiologic inputs at the organismal 
level. Similarly, insulin signaling, which inhibits muscle glycogen phosphorylase activ-
ity through dephosphorylation, is also a delayed response at the organismal level and 
depends on multiple physiologic inputs. Taken together, allosteric regulation of muscle 
glycogen phosphorylase activity provides a rapid-response control mechanism to mod-
ulate muscle glucose levels, whereas hormonal signaling requires input from multiple 
stimuli at the organismal level and provides a longer-term e�ect on enzyme activity 
through covalent modi�cations.

●	 We know the quality and quantity of end-of-chapter 
problems is an important litmus test for many 
instructors when reviewing textbooks. Our end-of-
chapter material includes a plentiful, balanced mix of 
basic Chapter Review questions and thought-provoking 
Challenge Problems.

●	 Online homework is becoming a more and more 
powerful learning tool for biochemistry courses. 
Norton’s Smartwork5 online homework platform 
offers book-specific assessment through a wide 
array of exercises: art-based interactive questions, 
critical-thinking questions, application questions, 
process animation questions, and chemistry drawing 
questions, as well as all of the book’s end-of-chapter 
questions. We are particularly excited to be the 
first to offer interactive 3D molecular visualization 
questions within the homework platform. Everything 
the student needs to interrogate a molecular structure 
is embedded in Smartwork5 using Molsoft’s ICM 
Browser application.

●	 Real-life examples from nature help students 
understand how structure (of a protein, lipid, 
carbohydrate, or nucleic acid) affects function, 
an important takeaway insight we stress in our 
biochemistry courses. A great example is the discussion 
in Chapter 2 concerning antifreeze proteins in fish 
and insects that live in extreme cold. Threonine amino 
acids in these proteins line up perfectly with ice 
crystals and thus prevents them from growing within 
the animals.

●	 We distributed human health examples, particularly 
discussions of human disease, throughout the 
text. These are especially relevant for the many 
students planning to pursue careers in medicine 
or other health-related professions. A prominent 
example occurs in Chapter 21—the description of 
a degenerative disease of the retina called retinitis 
pigmentosa, which is caused by defects in the RNA 
splicing machinery. This is a surprise to students, 
who expect that most human disease is the result of 
enzyme defects.

Thoughtful Pedagogy and Assessment 
Promotes Mastery of Biochemical Concepts
We feel strongly that myriad boxes and sidebars in text-
books distract from the content of the chapters and are 
rarely read by students. As a result, this book has a design 
that is clean and uncluttered.

●	 A Concept Integration question and its answer occurs 
at the end of each numbered chapter section. This 
feature prompts students to think critically about 
what they’re reading and to synthesize concepts in a 
meaningful way. 

concept integration 5.1
A frog species was found to contain a cytosolic liver protein that
bound a pharmaceutical drug present at high levels in e�uent from
a wastewater facility. Describe how this protein could be purified.

�e �rst step in purifying an uncharacterized protein is to develop a method to detect 
it speci�cally, such as an enzyme activity assay or binding assay. In this case, the pro-
tein is known to bind to a small molecule (pharmaceutical drug), and this binding 
activity can be used to develop a protein detection assay. �e assay could be based on 
protein binding to the drug that has been radioactively labeled or it might be possible 
to develop a �uorescently labeled version of the drug that has an altered absorption or 
emission spectrum as a function of speci�c protein binding. �e next step would be 
to use cell fractionation, centrifugation, and a combination of gel �ltration and ion-
exchange column chromatography to enrich for drug binding activity relative to total 
protein in the frog liver extract. A �nal step would be to develop an a�nity column 
that contains the drug covalently linked to a solid matrix and use this column to bind 
speci�cally, and then elute, the high-a�nity binding protein. �e purity of the protein 
would be assessed by SDS-PAGE at several steps within the puri�cation protocol.
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instructor-provided materials available to  them. Activity 
handouts will be available for download at wwnorton.com/
instructors for easy printing and distribution.

Coursepacks 
Available at no cost to professors or students, Norton 
Coursepacks for online or hybrid courses are available in 
a variety of formats, including Blackboard, Desire2Learn 
(D2L), and Canvas. With just a simple download from 
the instructor’s website, instructors can bring high-quality 
Norton digital media into a new or existing online course. 
Content is fully customizable and includes chapter-based 
assignments with high-quality visual assessments, perfect 
for distance learning classes or assignments between classes. 
The coursepack for Biochemistry also features the full suite 
of animations, vocabulary flashcards, and assignments 
based on 3D animations as well as art from the book—
everything students need for a great out-of-the-classroom 
experience.

PowerPoint Presentations and Figures
PowerPoint slide options meet the needs of every instructor 
and include lecture PowerPoint slides providing an 
overview of each chapter, five clicker questions per chapter, 
and links to animations. There is also a separate set of art 
PowerPoint slides featuring every photograph and drawn 
figure from the text. In addition, the PDB files used as the 
basis for many of the molecular structures in the book are 
available for download. 

Test Bank 
The Test Bank for Biochemistry is designed to help 
instructors prepare exams quickly and effectively. Questions 
are tagged according to Bloom’s taxonomy, and each 
chapter includes approximately 75 multiple-choice and 25 
essay questions. Five to ten questions per chapter use art 
taken directly from the book. In addition to tagging with 
Bloom’s, each question is tagged with metadata that places 
it in the context of the chapter and assigns it a difficulty 
level, enabling instructors to easily construct tests that are 
meaningful and diagnostic.

Ebook
Available for students to purchase online at any time, 
the Biochemistry ebook offers students a great low price, 
exceptional functionality, and access to the full suite of 
accompanying resources.

Resources for Instructors 
and Students
Smartwork5
This dynamic and powerful online assessment resource 
uses answer-specific feedback, a variety of engaging 
question types, the integration of the stunning book art, 
3D molecular animations, and process animations to 
help students visualize and master the important course 
concepts. Smartwork5 also integrates easily with your 
campus learning management system and features a 
simple, intuitive interface, making it an easy-to-use online 
homework system for both instructors and students.

3D Molecular Animations 
Eleven photorealistic 3D molecular animations based on 
PDB files were created by renowned molecular animator 
Dr. Janet Iwasa from the Department of Biochemistry at 
the University of Utah College of Medicine. Janet brings 
some of the most difficult concepts in biochemistry to 
life in stunning detail. These animations are available to 
students in coursepack assessments and through the ebook 
and are available with associated assessments for instructors 
to assign in the Smartwork5 homework system. Links to 
the animations are available to instructors at wwnorton.
com/instructors. 

Process Animations
Twenty process animations showcase the complex topics 
that students find most challenging. The animations are 
available to students in mobile-compatible format in the 
coursepack and the ebook, as well as online. Assessments 
written specifically for the animations are included in 
Smartwork5. Links to the animations are available to 
instructors at wwnorton.com/instructors. 

Ultimate Guide to Teaching with Biochemistry
This enhanced instructor’s manual will help any professor 
enrich his or her course with active learning. Each chapter 
includes  sample lectures, descriptions of the molecular 
animations with discussion questions and suggestions for 
classroom use, multimedia suggestions with discussion 
questions, an active learning activity, a think–pair–share 
style of activity, book-specific learning objectives, and 
full solutions. A list of other resources  (animations, 
coursepack resources, and so forth) will also be listed for 
each chapter  to ensure  instructors are aware of the many 
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C H A P T E R  O U T L I N E

1.1 What Is Biochemistry?

1.2 The Chemical Basis of 
Life: A Hierarchical Perspective

●● Elements and chemical groups 
commonly found in nature

●● Four major classes of 
small biomolecules are 
present in living cells

●● Macromolecules can be 
polymeric structures

●● Metabolic pathways consist of 
linked biochemical reactions

●● Structure and function 
of a living cell

●● Multicellular organisms 
use signal transduction for 
cell–cell communication

●● The biochemistry of ecosystems

1.3 Storage and Processing 
of Genetic Information

●● Genetic information is stored in 
DNA as nucleotide base pairs

●● Information transfer between 
DNA, RNA, and protein

1.4 Determinants of 
Biomolecular Structure 
and Function

●● Evolutionary processes govern 
biomolecular structure and function

●● Protein structure–function 
relationships can reveal 
molecular mechanisms

1
Principles of  
Biochemistry

◀  In the late 1800s, chemists in Europe sought to uncover the 
chemical basis for alcoholic fermentation in hopes of improving 
the quantity and quality of beer and wine production. In 1897, 
the German chemist Eduard Buchner discovered that an extract 
of yeast cells could be used in vitro (outside a living cell) to con-
vert glucose to carbon dioxide and ethanol under anaerobic con-
ditions. The discovery that some yeast proteins could function 
as chemical catalysts in the fermentation reaction ushered in the 
modern era of biochemistry.
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The birth of modern biochemistry can be traced to the end of the 19th century, 
when chemists discovered that cell extracts of brewer’s yeast contained every-
thing necessary for alcoholic fermentation. That is, processes associated with 

living organisms could actually be understood in terms of fundamental chemistry. The 
reductionist approach of breaking open cells and isolating their components for use in 
in vitro chemical reactions continued for most of the 20th century. During this time, 
scientists made numerous discoveries in cellular biochemistry that transformed our 
understanding of the chemical basis of life. These advances included describing the 
chemical structure and function of the major classes of biomolecules: nucleic acids, 
proteins, carbohydrates, and lipids. Moreover, thousands of metabolic reactions that 
direct molecular synthesis and degradation in cells were characterized in bacteria, yeast, 
plants, and animals. Knowledge gained from these biochemical studies has been used 
to develop pharmaceutical drugs, medical diagnostic tests, microbial-based industrial 
processes, and herbicide-resistant plant crops, among other things.

The field of biochemistry enjoyed tremendous growth in the 1970s, when tech-
niques were developed to manipulate deoxyribonucleic acid (DNA) based on an 
experimental approach that became known as recombinant DNA technology. This 
achievement led to the creation of the first biotechnology company in 1977, which 
later went on to use recombinant DNA technology to produce human insulin in bacte-
ria. The following 20 years were an explosive time for biochemical research. In addition 
to the development of more sophisticated biochemical tools, scientists achieved vast 
improvements in protein purification and structure determination as a result of new 
instrumentation and computational power.

Modern biochemistry encompasses both organic chemistry and physical 
chemistry, as well as areas of microbiology, genetics, molecular biology, cell biology, 
physiology, and computational biology. In this introductory chapter, we first present 
an overview of modern biochemistry. We then describe three biochemical principles 
that together provide a framework for understanding life at the molecular level:

	1.	 The hierarchical organization of biochemical processes within cells, 
organisms, and ecosystems underlies the chemical basis for life on Earth.

	2.	 DNA is the chemical basis for heredity and encodes the structural informa-
tion for RNA and protein molecules, which mediate biochemical processes 
in cells.

	3.	 The function of a biomolecule is determined by its molecular structure, 
which is fine-tuned by evolution through random DNA mutations and 
natural selection.

In Chapter 2, we describe three additional biochemical principles:

	4.	 Biological processes follow the same universal laws and thermodynamic 
principles that govern physical processes.

	5.	 Life depends on water because of its distinctive chemical properties and its 
central role in biochemical reactions.

	6.	 Biological membranes are selective hydrophobic barriers that define aqueous 
compartments in which biochemical reactions take place.
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1.1  What Is Biochemistry?
Biochemistry aims to explain biological processes at the molecular and cellular lev-
els. As its name implies, biochemistry is at the interface of biology and chemistry. 
It is a hands-on experimental science that relies heavily on quantitative analysis of 
data. Biochemists are interested in understanding the structure and function of bio-
logical molecules. Biochemical research often involves mechanistic studies that focus 
on hypothesis-driven experiments designed to answer specific biological questions. 
Examples include determining how a group of proteins catalyze the synthesis of a 
complex biomolecule or why biological membranes have different physical properties 
depending on their chemical composition.

One of the first biochemical processes to be investigated was fermentation: the con-
version of rotting fruit or grain into solutions of alcohol through the action of yeast. The 
Egyptians knew as early as 2000 B.C. that crushed dates produce both an intoxicating 
substance (ethanol) and a caustic acid (acetic acid). The Greeks used “zyme” (yeast) to 
produce gas (carbon dioxide) in bread and turn grapes into wine. Through the 17th and 
18th centuries, great scientific debates centered around the question whether fermentation 
was the result of an ethereal “vital life force” present in living cells or instead was based only 
on the fundamental laws of chemistry and physics that govern the physical world. Some 
scientists reasoned that if fermentation could be shown to occur outside of a living cell, it 
would provide evidence that a vital life force was not required for this chemical process.

Numerous attempts by Louis Pasteur and others to prepare cell-free extracts from 
yeast cells failed, which some interpreted to mean that a vital life force was indeed 
required for fermentation. The turning point came in 1897, when the German chem-
ist Eduard Buchner (Figure 1.1) demonstrated that carbon dioxide and ethyl alcohol 
could in fact be produced from sugar using brewer’s yeast extracts in an in vitro reac-
tion. Buchner published his observations and proposed that fermentation required the 
“ferments of zyme,” now known as enzymes, which function as catalysts to drive the in 
vitro reactions. Buchner’s work set a foundation for the field of biochemistry, where in 
vitro studies are the cornerstone for numerous advances in medical science.

As is often the case in an experimental science such as biochemistry, several arbi-
trary decisions led to the success of Buchner’s extracts. First, where Pasteur had used 
glass to grind up yeast and release the fermentation “juices,” Buchner chose to use 
quartz mixed with diatomaceous earth (kieselguhr) to prepare the extract. This choice 
was a good one because it avoided making the extract alkaline and inactive, which 
occurs when yeast proteins come in contact with glass. Second, after trying a variety of 
preservatives to prevent coagulation, Buchner decided to use a 40% sucrose solution, 
not realizing at the time that this would provide the necessary glucose for alcoholic 
fermentation. Lastly, Buchner used a strain of yeast called Saccharomyces cerevisiae, pro-
vided by the local brewery in Munich, to prepare an undiluted cell-free extract. This 
strain of yeast turned out to work much better than yeast strains available in Paris, 
where Pasteur had done his experiments years earlier. Although it might appear from 
this that Buchner’s accomplishment of in vitro alcoholic fermentation was the result 
of luck, his optimized protocol was developed only after many failed attempts. Indeed, 
Buchner’s systematic approach to solving the problem of inactive cell-free extracts is a 
classic example of experimental biochemistry.

As we shall see shortly, all living cells contain enzymes. These biomolecules, either 
protein or ribonucleic acid (RNA), function as reaction catalysts to increase the rates 

Figure 1.1 Biochemical reactions 
are often studied or used in in 
vitro systems. Eduard Buchner 
(1860–1917) was the first to 
demonstrate that cell-free yeast 
extracts could accomplish in 
vitro fermentation of sugar into 
alcohol and carbon dioxide, a 
discovery that led to the birth of 
modern biochemistry. Buchner was 
awarded the 1907 Nobel Prize in 
Chemistry for his groundbreaking 
research on in vitro fermentation. 
HULTON ARCHIVE/GETTY IMAGES.
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of biochemical reactions dramatically. Enzymes are responsible for aerobic respiration, 
fermentation, nitrogen metabolism, energy conversion, and even programmed cell 
death. Two key enzymes are required for the fermentation of glucose by yeast. The first 
is pyruvate decarboxylase, which converts pyruvate, a breakdown product of glucose, 
into acetaldehyde and carbon dioxide (CO2). The second is alcohol dehydrogenase, an 
enzyme that reduces acetaldehyde to form ethanol (Figure 1.2).

Following the lead of Buchner and others, biochemists throughout much of the 
20th century focused on systematically dismantling each of the chemical reactions 
required for cellular life. Almost half of this book describes the biochemical reactions 
and metabolic pathways (functionally related chemical reactions in cells) elucidated 
by early biochemists (Chapters 9–19). The rest of the book is devoted to biochemical 
discoveries made primarily since the 1970s, focusing on the structure and function of 
proteins (Chapters 4–8) and the biochemistry of genetic inheritance (Chapters 20–23). 
Both of these modern advances in biochemistry can be traced to the Eureka! moment 
in 1953 when James Watson and Francis Crick solved the molecular structure of DNA.

Biochemistry, like genetics and cell biology, is a core discipline in the life sciences. 
Biochemistry provides the underlying chemical principles guiding discoveries in medi-
cine, agriculture, and pharmaceuticals. A molecular understanding of chemical reactions 
in living cells and of how cells communicate to one another in a multicellular organism 
has led to a dramatic increase in expected human life spans through improved health 
care, food production, and environmental science. Biochemistry is also a powerful 
applied science that uses advanced experimental methods to develop in vitro conditions 
for exploiting cellular processes and enzymatic reactions. Examples include the devel-
opment of new pharmaceutical drugs based on the knowledge of biochemical processes 
under pathologic conditions, as well as diagnostic tests that detect these abnormalities 
(Figure 1.3). Improved detergents based on enzymatic reactions and the faster ripening 
of fruits and vegetables using ethylene gas are other examples of applied biochemistry. 
Moreover, environmental science has benefited from advances in biochemistry through 
the development of quantitative field tests that can provide vital information about 
changes in fragile ecosystems due to industrial or biological contamination.

It is an exciting time to be learning biochemistry! Indeed, in this current “Age 
of Biology,” no field is more centrally positioned to exploit this new era. Technolog-
ical advances in microanalytical chemical methods such as mass spectrometry and 
enhanced techniques to render high-resolution images of biomolecular structures pro-
vide immense opportunity for new discoveries in biochemistry. Chemists, life scientists, 
and health-field professionals with a firm understanding of the role that biochemistry 
plays in the chemical nature of life are certain to have a distinct advantage in applying 
biological discoveries made during the next 50 years.

concept integration 1.1
How did in vitro alcoholic fermentation provide evidence for the 
“chemistry of life”?

Eduard Buchner’s in vitro experiment in 1897 used a yeast cell-free extract to convert 
glucose into ethanol and CO2, thereby providing the first compelling evidence that a 
“vital force” was not required for alcoholic fermentation. Moreover, this landmark bio-
chemical experiment suggested that conventional chemical reactions were likely to be 
the molecular basis for life itself and stimulated 50 years of research to prove it.
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Figure 1.2 The yeast enzymes 
pyruvate decarboxylase and alcohol 
dehydrogenase are responsible 
for converting pyruvate, a product 
of glucose metabolism, into 
alcohol and carbon dioxide.
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1.2  The Chemical Basis of Life: 
A Hierarchical Perspective
We have seen that biochemistry is an interdisciplinary science that brings together 
many concepts from chemistry, cell biology, and physiology. This integrated approach 
to molecular life science makes biochemistry very important, but it also means that the 
student needs to master many terms and definitions. In this section, we review seven lev-
els of biochemical hierarchy—or levels of organizational complexity—that encompass 
the chemistry of life and use terminology that you will encounter throughout the book.

The foundation of this hierarchy is chemical elements and functional groups 
(Figure 1.4). Next, chemical groups are organized into biomolecules, of which there 
are four major types in nature: amino acids, nucleotides, simple sugars, and fatty acids. 
Then, higher-order structures of biomolecules form macromolecules, which can be 
chemical polymers such as proteins (polymers of amino acids), nucleic acids (polymers 
of nucleotides), or polysaccharides such as cellulose, amylose, and glycogen (polymers 
of the carbohydrate glucose).

Organization of macromolecules and enzymes into metabolic pathways is the next 
hierarchical level. These pathways enable cells to coordinate and control complex biochem-
ical processes in response to available energy. Examples of metabolic pathways include glu-
cose metabolism (glycolysis and gluconeogenesis), energy conversion (citrate cycle), and 
fatty acid metabolism (fatty acid oxidation and biosynthesis). Metabolic pathways func-
tion within membrane-bound cells. The membranes create aqueous microenvironments 
within the cells for biochemical reactions involving metabolites and macromolecules.

Cell specialization, the next level of organizational complexity, allows multicellu-
lar organisms to exploit their environment through signal transduction mechanisms 
that facilitate communication between cells. Organisms represent the subsequent 
level, as they consist of large numbers of specialized cells, allowing multicellular 
organisms to respond to environmental changes. One way multicellular organisms 

Figure 1.3 Applied biochemistry uses a basic understanding of biochemical principles to guide 
advances in agriculture, medicine, and industry. ENVIRONMENTAL SCIENCE: EMILY MICHOT/MIAMI HERALD/MCT VIA 

GETTY IMAGES; BIOTECHNOLOGY: ROGER RESSMEYER/CORBIS; AGRICULTURE: TOHRU MINOWA/A.COLLECTIONRF/GETTY IMAGES; 

PHARMACEUTICALS: DIMA SOBKO/SHUTTERSTOCK; CLINICAL DIAGNOSTICS: JAVIER LARREA/AGEFOTOSTOCK; COMMERCIAL 

PRODUCTS: ©ALCONOX, INC. 

Applied Biochemistry
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are able to adapt to change is through signal transduction mechanisms that facilitate 
cell–cell communication. Finally, cohabitation of different organisms in the same 
environmental niche creates a balanced ecosystem, characterized by shared use of 
resources and waste management. As you will see, the field of biochemistry incorpo-
rates the study of chemical life at all levels of this hierarchy.

Elements and Chemical Groups Commonly Found in Nature
Almost 100 chemical elements are found in nature, and chemists have organized them 
into the periodic table according to their atomic properties. The distribution of these 
elements in living systems is very different from that in the physical world. In par-
ticular, more than 97% of the weight of most organisms consists of just six elements: 
hydrogen, oxygen, carbon, nitrogen, phosphorus, and sulfur (Table 1.1). The vast major-
ity of this mass comes from hydrogen and oxygen, most of which is present as H2O 
(the human body is 70% water). In addition to the six most abundant elements, trace 
elements such as zinc, iron, manganese, copper, and cobalt are required for life, primar-
ily as cofactors in proteins. Essential ions include calcium, chloride, magnesium, potas-
sium, and sodium, many of which play key roles in cell signaling and neurophysiology. 
The amount of carbon in living organisms is disproportionately high, being 100 times 
more abundant in the human body than in Earth’s crust.

Although the abundance of elements in biological systems is quite different from 
the abundance of elements in Earth, biochemical reactions are no different from other 
chemical reactions with regard to bond properties and reaction mechanisms. As you 
learned in introductory chemistry, covalent bonds form when two atoms share unpaired 
electrons in their outer shells. The strength of a covalent bond depends on the relative 
affinities of the two atoms for electrons, the distance between the bonding electrons 
and the nucleus of each atom, and the nuclear charge of each atom. For example, water, 
ammonia, carbon dioxide, and carbonic acid are formed by covalent bonds between 
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H, O, N, and C (Figure 1.5). Hydrogen requires two electrons to complete its outer 
shell, whereas O, N, and C each require eight electrons. Ions such as hydronium ion, 
H3O

+, ammonium ion, NH4
+, and bicarbonate ion, HCO3

− are formed by the gain 
of a proton and loss of an electron (or vice versa), so as to maintain a complete outer 
shell. Double bonds are stronger than single bonds, as more energy is required to break 
a double bond (Table 1.2).

The chemical nature of life on Earth is based on the element carbon (Figure 1.5). 
Molecules containing carbon are called organic molecules, and organic chemistry is 
the study of carbon-based compounds. Indeed, early biochemists were often organic 
chemists who became interested in “biological” chemistry. Carbon has a unique ability 

Table 1.1 ELEMENTAL COMPOSITION OF THE HUMAN 
BODY AS A PERCENTAGE OF DRY WEIGHT

Additional trace elements (<0.1%)

Element Symbol
Percent dry 
weight (%) Element Symbol

Carbon C 62 Manganese Mn

Nitrogen N 11 Iron Fe

Oxygen O 9 Cobalt Co

Hydrogen H 6 Copper Cu

Calcium Ca 5 Zinc Zn

Phosphorus P 3 Selenium Se

Potassium K 1 Molybdenum Mo

Sulfur S 1 Iodine I

Chlorine Cl <1 Fluorine F

Sodium Na <1 Chromium Cr

Magnesium Mg <1 Tin Sn

Note: These values exclude the contribution of oxygen and hydrogen to the large amount of water in the human 
body (70% by weight).
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Figure 1.5 Covalent bonds 
result from sharing of an electron 
pair between two atoms. a. H, O,  
N, and C all have unpaired 
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